Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling.
نویسندگان
چکیده
Phosphatidylinositol 3-OH-kinase (PI3K) and STAT3 are signal transduction molecules activated by leptin in brain areas controlling food intake. To investigate their role in leptin-mediated inhibition of hypothalamic neuropeptide Y (Npy) and agouti-related peptide (Agrp) gene expression, male Sprague-Dawley rats (n = 5/group) were either fed ad libitum or subjected to a 52-h fast. At 12-h intervals, the PI3K inhibitor LY-294002 (LY, 1 nmol) or vehicle was injected intracerebroventricularly (ICV) as a pretreatment, followed 1 h later by leptin (3 microg icv) or vehicle. Fasting increased hypothalamic Npy and Agrp mRNA levels (P < 0.05), and ICV leptin administration prevented this increase. As predicted, LY pretreatment blocked this inhibitory effect of leptin, such that Npy and Agrp levels in LY-leptin-treated animals were similar to fasted controls. By comparison, leptin-mediated activation of hypothalamic STAT3 signaling, as measured by induction of both phospho-STAT3 immunohistochemistry and suppressor of cytokine signaling-3 (Socs3) mRNA, was not significantly attenuated by ICV LY pretreatment. Because NPY/AgRP neurons project to the hypothalamic paraventricular nucleus (PVN), we next investigated whether leptin activation of PVN neurons is similarly PI3K dependent. Compared with vehicle, leptin increased the number of c-Fos positive cells within the parvocellular PVN (P = 0.001), and LY pretreatment attenuated this effect by 35% (P = 0.043). We conclude that leptin requires intact PI3K signaling both to inhibit hypothalamic Npy and Agrp gene expression and activate neurons within the PVN. In addition, these data suggest that leptin activation of STAT3 is insufficient to inhibit expression of Npy or Agrp in the absence of PI3K signaling.
منابع مشابه
Cellular leptin resistance impairs the leptin-mediated suppression of neuropeptide Y secretion in hypothalamic neurons.
Evidence shows that neuropeptide Y (NPY) neurons are involved in mediating the anorexigenic action of leptin via neuronal circuits in the hypothalamus. However, studies have produced limited data on the cellular processes involved and whether hypothalamic NPY neurons are susceptible to cellular leptin resistance. To investigate the direct regulation of NPY secretion by leptin, we used novel NPY...
متن کاملAdiponectin potentiates the acute effects of leptin in arcuate Pomc neurons
OBJECTIVE Adiponectin receptors (AdipoRs) are located on neurons of the hypothalamus involved in metabolic regulation - including arcuate proopiomelanocortin (Pomc) and Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons. AdipoRs play a critical role in regulating glucose and fatty acid metabolism by initiating several signaling cascades overlapping with Leptin receptors (LepRs). However, ...
متن کاملSomato-Dendritic Localization and Signaling by Leptin Receptors in Hypothalamic POMC and AgRP Neurons
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub...
متن کاملPeptides that Regulate Food Intake Acute food deprivation and chronic food restriction differentially affect hypothalamic NPY mRNA expression
Bi, Sheng, Benjamin M. Robinson, and Timothy H. Moran. Acute food deprivation and chronic food restriction differentially affect hypothalamic NPY mRNA expression. Am J Physiol Regul Integr Comp Physiol 285: R1030–R1036, 2003. First published July 3, 2003; 10.1152/ajpregu.00734.2002.— Although acute food deprivation and chronic food restriction both result in body weight loss, they produce diffe...
متن کاملWhere Does Insulin Resistance Start?
During the last two decades, many studies have focused on the pivotal role of the hypothalamus in the control of energy metabolism (1). Hypothalamic nuclei, particularly the arcuate and the ventromedial, receive numerous peripheral inputs from adipokines (leptin, adiponectin, and resistin) and free fatty acids. These signals of “nutrient abundance” lead to the activation of multiple hypothalami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 289 6 شماره
صفحات -
تاریخ انتشار 2005